A procedure for the prediction of temperature-sensitive mutants of a globular protein based solely on the amino acid sequence.
نویسندگان
چکیده
Temperature-sensitive (Ts) mutants of a protein are an extremely powerful tool for studying protein function in vivo and in cell culture. We have devised a method to predict those residues in a protein sequence that, when appropriately mutated, are most likely to give rise to a Ts phenotype. Since substitutions of buried hydrophobic residues often result in significant destabilization of the protein, our method predicts those residues in the sequence that are likely to be buried in the protein structure. We also indicate a set of amino acid substitutions, which should be made to generate a Ts mutant of the protein. This method requires only the protein sequence. No structural information or homologous sequence information is required. This method was applied to a test data set of 30 nonhomologous protein structures from the Protein Data Bank. All of the residues predicted by the method to be > or = 95% buried were, in fact, buried in the protein crystal structure. In contrast, only 50% of all hydrophobic residues in this data set were > or = 95% buried. This method successfully predicts several known Ts and partially active mutants of T4 lysozyme, lambda repressor, gene V protein, and staphylococcal nuclease. This method also correctly predicts residues that form part of the hydrophobic cores of lambda repressor, myoglobin, and cytochrome b562.
منابع مشابه
Prediction of 3D protein Structure based on Mutation of AKAP3 and PLOD3 Gene in Case of Non-Obstructive Azoospermia
Background: The present study has been designed with the aim of evaluating A-kinase anchoring proteins 3 (AKAP3)and Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase 3 (PLOD3) gene mutations and prediction of 3D proteinstructure for ligand binding activity in the cases of non-obstructive azoospermic male.Materials and Methods: Clinically diagnosed cases of non-obstructive azoos...
متن کاملIsolation and Characterization of a New Peroxisome Deficient CHO Mutant Cell Belonging to Complementation Group 12
We searched for novel Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by an improved method using peroxisome targeting sequence (PTS) of Pex3p (amino acid residues 1–40)-fused enhanced green fluorescent protein (EGFP). From mutagenized TKaEG3(1–40) cells, the wild-type CHO-K1 stably expressing rat Pex2p and of rat Pex3p(1–40)-EGFP, numerous cell colonies resistant to...
متن کاملBroiler Diets Formulated Based on Digestible Amino Acid Values as Determined by in vivo and Prediction Methods
The aim of the present study was to assess whether near infrared reflectance spectroscopy (NIRS) and regression equations are the practical and accurate approach of nutritional assessment of common feedstuffs. Therefore two experiments were conducted to study the effect of amino acid determination methods on broiler performance. In experiment I, two hundred thirty four male Ross broiler chicks ...
متن کاملProtein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches
DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...
متن کاملPrediction of the maximal stability temperature of monomeric globular proteins solely from amino acid sequence.
Globular protein thermostability is characterized the cold denaturation, maximal stability (Tms) and heat denaturation temperatures. For mesophilic globular proteins, Tms typically ranges from -25 degrees C to +35 degrees C. We show that the indirect estimate of Tms from calorimetry and the direct estimate from chemical denaturation performed in a range of temperatures are in close agreement. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 93 24 شماره
صفحات -
تاریخ انتشار 1996